
2nd FAIR Workshop 
in Green-aware AI

Riccardo Cantini, Alessio Orsino, 
Domenico Talia, Paolo Trunfio

Towards Interpretable Energy 
Estimation for Edge AI 

Applications

University of Calabria

March 24, 2025



• Environmental sustainability

• Optimize energy use and resource management of AI applications.

• Design energy-aware solutions to facilitate harnessing AI capabilities in low-resource settings.

WP9.3 Task 1: main concepts & goals

• Social sustainability

• Promote inclusivity and fairness of AI systems.

• Uncover and mitigate biases in AI systems, to ensure ethical practices and support social equity.



• Environmental sustainability

• Interpretable energy estimation for edge AI applications

• Cross-architecture knowledge distillation of LLMs for efficient deployment at the edge

• Efficient test-time adaptation on edge devices

WP9.3 Task 1: main research activities

• Social sustainability

• Jailbreak-based adversarial analysis to uncover hidden biases and stereotypes in LLMs

• Analysis of discriminatory tendencies in domain-specific LLMs



Introduction to Edge AI: key advantages and challenges

• Edge AI refers to AI and ML models executed directly on edge devices instead of centralized cloud servers.

• Advantages

• Reduces latency, enabling (near)real-time decision-making.

• Reduces reliance on cloud computing, improving privacy and security.

• Optimizes bandwidth usage by processing data locally.

• Challenges

• Limited computational resources (CPU, memory, storage).

• Energy constraints, as edge devices are often battery-powered.

• Complexity of energy consumption estimation and lack of interpretability.



• Develop an interpretable energy estimation model that provides:

• Accurate energy consumption predictions for edge AI/ML workloads.

• Fine-grained, actionable insights of the consumption estimates.

• This will help fostering sustainability in edge AI settings:

• It supports the adoption of green-aware practices such as intelligent scheduling 
strategies and green-aware NAS (neural architecture search).

• Interpretability allows developers and engineers to gain actionable insights into 
optimizing algorithms and deployment configurations to minimize energy costs.

Research objective



Problem formulation

• We define the energy consumption ℰ 𝑎, 𝑑 of an ML application, described by an algorithm 𝑎 and a dataset 𝑑
within a fixed distributed architecture, as the sum of three components:

ℰ 𝑎, 𝑑  = ℰ𝑐𝑜𝑚𝑝(𝑎, 𝑑) + ℰ𝑑𝑎𝑡𝑎(𝑎, 𝑑) + ℰ𝑐𝑜𝑚𝑚(𝑎, 𝑑)

❑ 𝐸𝑐𝑜𝑚𝑝(𝑎, 𝑑) is the fraction due to computation, 𝐸𝑑𝑎𝑡𝑎(𝑎, 𝑑) is the fraction due to data access, and 𝐸𝑐𝑜𝑚𝑚(𝑎, 𝑑) is the 

fraction due to communication over the network.

• We frame interpretable energy estimation as a two-step process:

1. Estimating energy components by leveraging supervised learning techniques, unveiling the patterns 
linking energy consumption to algorithm characteristics and input data.

2. Use eXplainable AI (XAI) to provide insightful interpretations of the consumption estimates to the user.



Modeling energy via learnable proxies

• We represent a given pair (𝑎, 𝑑) as a feature vector ℱ describing algorithm and dataset characteristics.

• We rewrite the total energy consumption as the weighted sum of learnable proxies (i.e., measurable counters) 
for computation (𝒫𝑐𝑜𝑚𝑝), data access (𝒫𝑑𝑎𝑡𝑎), and communication (𝒫𝑐𝑜𝑚𝑚).

ℰ 𝐹  = 𝛽𝑐𝑜𝑚𝑝 ⋅ ℛ𝑐𝑜𝑚𝑝(ℱ) + 𝛽𝑑𝑎𝑡𝑎 ⋅ ℛ𝑑𝑎𝑡𝑎(ℱ) + 𝛽𝑐𝑜𝑚𝑚 ⋅ ℛ𝑐𝑜𝑚𝑚(ℱ)

• Where:

❑ ℱ represents the feature vector describing 𝑎 and 𝑑.

❑ ℛ𝑐𝑜𝑚𝑝, ℛ𝑑𝑎𝑡𝑎, ℛ𝑐𝑜𝑚𝑚 are regression models predicting energy proxies from ℱ, i.e., 𝒫𝑥 = ℛ𝑥(ℱ).

❑ 𝛽𝑐𝑜𝑚𝑝, 𝛽𝑑𝑎𝑡𝑎, 𝛽𝑐𝑜𝑚𝑚 are experimentally determined scaling factors converting proxies into energy values.



Interpreting energy estimates with XAI

• Interpretable energy estimation implies understanding the relationship between input features ℱ and 
the total energy consumption ℰ 𝐹 .

• Since overall consumption depends on the proxies 𝒫𝑥, which are outputs of regression models ℛ𝑥(ℱ), 
we frame the problem of interpretability as explaining the predictions of these models.

• Such explanations, achieved by applying feature attribution techniques, enables to trace the total energy 
consumption back to the original input features.

• This approach not only estimates overall consumption but also delivers component-wise, feature-level 
explanations for why a specific algorithm-dataset combination incurs a particular energy cost.



Proposed methodology

• Training of the ML Models

• Training data is collected during the execution of 
various ML algorithms across diverse datasets via 
application monitoring.

• A set of platform-specific regression models, ℛ𝑥, is 
trained for each proxy 𝒫𝑥 using collected data.

• A classifier 𝒞 is trained to filter out (𝑎, 𝑑) pairs whose 
execution would violate a set of predefined constraints:

❑ user-defined (e.g., max execution time)

❑ platform-specific (e.g., max available memory)



• User Query Response Generation

• The classifier 𝒞 first evaluates whether the 
application satisfies a set of predefined constraints 𝒬.

❑ 𝒬 = 0 → the application is rejected and a feature-level 
explanation is provided to the user.

❑ 𝒬 = 1 → the application is accepted and proceeds to 
regression and energy estimation.

• Proxies 𝒫𝑥 are estimated and aggregated using 
𝛽𝑥 factors to obtain the overall energy consumption.

• Local explanations are provided for all regression 
estimates 𝒫𝑥 = ℛ𝑥(ℱ) explaining how each feature 
𝑓 ∈ 𝐹 affects the energy estimate.

Proposed methodology



• Experimental setting

• The experiments were executed on a Raspberry Pi 4 Model B featuring a 64-bit quad-core Cortex A72 
processor and equipped with 4 GB of LPDDR4 RAM.

• We utilized scikit-learn implementation of the following algorithms: Decision Tree, K-Means, Logistic 
Regression, K-Nearest Neighbors, Principal Component Analysis, Linear Regression, and Random Forest.

• Experiments were run using a single-core setting, using perf as a profiling tool for measuring proxy 
variables and a RS PRO RS-9519BT digital multimeter for the actual measurement of energy consumption.

➢ Preliminary experiments: a single-device setting is employed to provide an initial assessment of the 
effectiveness of the proposed methodology. Therefore, communication costs are excluded in this case, 
since no data exchange between devices occurs.

Experimental evaluation



• Experimental design and data collection

• A set of synthetic datasets with different shapes (rows, columns) is generated with the Orthogonal Latin 
Hypercube Sampling (OLHS), a statistical sampling method designed to create evenly distributed samples 
across multiple dimensions.

• The final training dataset 𝒟 is obtained by monitoring the execution of the selected set of ML algorithms 
on such datasets, measuring the value of proxy variables.

• The proxy variables selected to model energy consumption are as follows:

❑ Execution time for computation, reflecting how long the application runs. The scaling factor is the 
device’s average power consumption at full CPU load (𝛽𝑐𝑜𝑚𝑝 = 3.2W).

❑ Cache misses (CM) for data access, indicating instances where data must be fetched from slower 
memory. The scaling factor is the average energy per cache miss, emphasizing the impact of poor 
data locality (𝛽𝑑𝑎𝑡𝑎 = 1 nJ).

Experimental evaluation



• We used two distinct set of constraints for the classification model, defined as follows:

Classification and Regression Results

• Across all tested configurations and tasks, 
AutoTabPFN a pre-trained Transformer model 
designed for effective in-context learning (ICL)
with small tabular datasets, consistently 
outperformed competing models.



• We tested the system by submitting 3 different instances, obtaining the following results.

• Test Case 1

• Algorithm: Logistic Regression,  size: 501 MB, rows: 750 000, cols: 692

• Classifier prediction → Out-of-Memory Error

• Non-executability explanation (SHAP abs.):

❑ Dataset size (0.35) 

❑ Number of rows (0.25) 

❑ Algorithm (0.21) 

❑ Number of columns (0.19) 

• Interpretation: The high dataset size led to excessive memory use, causing an OOM error.

Example test cases



• Test Case 2

• Algorithm: SVM,  size: 244.62 MB, rows: 3 375 000, cols: 19

• Classifier prediction → Timeout Error

• Non-executability explanation (SHAP abs.):

❑ Number of rows (0.52) 

❑ Algorithm (0.42) 

❑ Number of columns (0.06) 

❑ Dataset size (near zero) 

• Interpretation: The SVM model struggled with large row sizes, leading to an execution timeout.

Example test cases



• Test Case 3

• Algorithm: Random Forest,  size: 18.45 MB, rows: 293 139, cols: 9

• Classifier prediction → Executable

• Regressors prediction:

❖ Execution time: 398.6 s

❑ Algorithm (0.50) 

❑ Number of rows (0.31) 

❑ Dataset size (0.12) 

❑ Number of columns (0.07) 

• Interpretation: While the execution was successful, cache efficiency optimizations could reduce energy usage.

Example test cases

❖ Cache miss: 6.06 ⋅ 109

❑ Algorithm (0.66) 

❑ Number of rows (0.33) 

❑ Number of columns (0.01) 

❑ Dataset size (near zero) 



Key findings and conclusions

• Main contributions

• A novel methodology for interpretable energy estimation in Edge AI.

• First approach combining XAI with ICL-based energy estimation in Edge AI settings. 

• Supports green-aware AI practices by providing fine-grained interpretable energy estimates to the user.

• Impact & future applications

• Optimizing AI deployment in low-power edge environments (IoT, mobile AI, embedded systems).

• Enabling real-time energy-aware decision-making in edge settings.

• Supporting green-aware AI applications, such as green-aware NAS and ML workflow scheduling.



• This work was accepted for publication at the 
3rd International Workshop on Intelligent and 
Adaptive Edge-Cloud Operations and Services 
(Intel4EC) workshop.

• The workshop will be held in conjunction with 
the 39th IEEE International Parallel and 
Distributed Processing Symposium (IPDPS’25).

Towards Interpretable Energy Estimation for Edge AI Applications


	Diapositiva 1: 2nd FAIR Workshop  in Green-aware AI
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18

