Publications Journals R. Cantini , M. Capalbo, and D. Talia,
“ZEP-NAS: Enabling green-aware model design via zero-cost emission proxy in neural architecture search ”, Array , p. 100566, 2025.
Cite R. Cantini , F. Marozzo, A. Orsino, D. Talia, and P. Trunfio, “Dynamic hashtag recommendation in social media with trend shift detection and adaptation ”, Transactions on Computational Social Systems , 2025.
Cite R. Cantini , A. Orsino, M. Ruggiero, and D. Talia, “Benchmarking adversarial robustness to bias elicitation in large language models: scalable automated assessment with llm-as-a-judge ”, Machine Learning , vol. 114, no. 11, p. 249, 2025.
Cite L. Belcastro, R. Cantini , F. Marozzo, D. Talia, and P. Trunfio, “Detecting mental disorder on social media: a ChatGPT-augmented explainable approach ”, Online Social Networks and Media , vol. 48, p. 100321, 2025.
Cite R. Cantini , C. Cosentino, F. Marozzo, D. Talia, and P. Trunfio, “Harnessing prompt-based large language models for disaster monitoring and automated reporting from social media feedback ”, Online Social Networks and Media , vol. 45, p. 100295, 2025.
Cite R. Cantini , C. Cosentino, I. Kilanioti, F. Marozzo, and D. Talia, “Unmasking deception: a topic-oriented multimodal approach to uncover false information on social media ”, Machine Learning , vol. 114, no. 1, p. 13, 2025.
Cite R. Cantini , A. Orsino, and D. Talia, “Xai-driven knowledge distillation of large language models for efficient deployment on low-resource devices ”, Journal of Big Data , vol. 11, no. 1, 2024.
Cite R. Cantini , F. Marozzo, A. Orsino, et al., “Block size estimation for data partitioning in hpc applications using machine learning techniques ”, Journal of Big Data , vol. 11, no. 1, 2024.
Cite L. Belcastro, R. Cantini , F. Marozzo, A. Orsino, D. Talia, and P. Trunfio, “Programming big data analysis: principles and solutions ”, Journal of Big Data , vol. 9, no. 1, 2022.
Cite R. Cantini , F. Marozzo, D. Talia, and P. Trunfio, “Analyzing political polarization on social media by deleting bot spamming ”, Big Data and Cognitive Computing , vol. 6, no. 1, 2022.
Cite L. Belcastro, F. Branda, R. Cantini , F. Marozzo, D. Talia, and P. Trunfio, “Analyzing voter behavior on social media during the 2020 us presidential election campaign ”, Social Network Analysis and Mining , vol. 12, no. 1, 2022.
Cite L. Belcastro, R. Cantini , and F. Marozzo, “Knowledge discovery from large amounts of social media data ”, Applied Sciences , vol. 12, no. 3, 2022.
Cite R. Cantini , F. Marozzo, G. Bruno, and P. Trunfio, “Learning sentence-to-hashtags semantic mapping for hashtag recommendation on microblogs ”, ACM Transactions on Knowledge Discovery from Data (TKDD) , vol. 16, no. 2, 2021.
Cite R. Cantini , F. Marozzo, S. Mazza, D. Talia, and P. Trunfio, “A weighted artificial bee colony algorithm for influence maximization ”, Online Social Networks and Media , vol. 26, p. 100167, 2021.
Cite R. Cantini , F. Marozzo, A. Orsino, D. Talia, and P. Trunfio, “Exploiting machine learning for improving in-memory execution of data-intensive workflows on parallel machines ”, Future Internet , vol. 13, no. 5, 2021.
Cite L. Belcastro, R. Cantini , F. Marozzo, D. Talia, and P. Trunfio, “Learning political polarization on social media using neural networks ”, IEEE Access , vol. 8, 2020.
Cite Conferences R. Cantini , C. Cosentino, F. Marozzo, D. Talia, and P. Trunfio, “Neural topic modeling in social media by clustering latent hashtag representations ”, in ECAI 2025 , 2025.
Cite R. Cantini , G. Cosenza, A. Orsino, and D. Talia, “Are large language models really bias-free? jailbreak prompts for assessing adversarial robustness to bias elicitation ”, in Discovery Science , 2024.
Cite R. Cantini , C. Cosentino, and F. Marozzo, “Multi-dimensional classification on social media data for detailed reporting with large language models ”, in AIAI , 2024.
Cite R. Cantini , C. Cosentino, I. Kilanioti, F. Marozzo, and D. Talia, “Unmasking covid-19 false information on twitter: a topic-based approach with bert ”, in Discovery Science , 2023.
Cite R. Cantini and F. Marozzo, “Topic detection and tracking in social media platforms ”, in Pervasive Knowledge and Collective Intelligence on Web and Social Media , 2023.
Cite R. Cantini , F. Marozzo, A. Orsino, M. Passarelli, and P. Trunfio, “A visual tool for reducing returns in e-commerce platforms ”, in IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI) , 2021.
Cite L. Belcastro, R. Cantini , F. Marozzo, D. Talia, and P. Trunfio, “Discovering political polarization on social media: a case study ”, in 15th International Conference on Semantics, Knowledge and Grids (SKG) , 2019.
Cite Workshops R. Cantini , N. Gabriele, A. Orsino, and D. Talia, “Is reasoning all you need? probing bias in the age of reasoning language models,” AEQUITAS Workshop (ECAI 2025) , 2025. To appear.
Cite R. Cantini , N. Gabriele, and A. Orsino, “A parameter-efficient approach to distilling large language models via meta-learning ”, in ADBIS , 2025.
Cite L. Belcastro, R. Cantini , F. Marozzo, A. Orsino, D. Talia, and P. Trunfio, “Advancing green and fair ai: a research perspective on environmental and social sustainability ”, Ital-IA 2025 .
Cite R. Cantini , D. M. Longo, and D. Thakur, “Preface to the proceedings of green-aware ai 2024 ”, AIxIA 2024 .
Cite R. Cantini , A. Orsino, D. Talia, and P. Trunfio, “Towards interpretable energy estimation for edge ai applications ”, IPDPS 2025 .
Cite P. Lindia, R. Cantini , F. Bettucci, L. Sartori, and P. Trunfio, “Enhancing the evaluation of fault detection models in smart agriculture using llm agents for rule-based anomaly generation ”, AIxIA 2024 .
Cite Books D. Talia, P. Trunfio, F. Marozzo, L. Belcastro, R. Cantini , and A. Orsino, “Programming big data applications: scalable tools and frameworks for your needs ”, World Scientific , 2023.
Cite Chapters L. Belcastro, R. Cantini , F. Marozzo, D. Talia, and P. Trunfio, “Shedding light inside the black box: techniques for explainable artificial intelligence in healthcare ”, in Explainable Machine Intelligence in Healthcare , 2025.
Cite R. Cantini , F. Marozzo, and A. Orsino, “Deep learning meets smart agriculture: using lstm networks to handle anomalous and missing sensor data in the compute continuum ”, in Device-Edge-Cloud Continuum , 2023.
Cite A. Orsino, R. Cantini , and F. Marozzo, “Evaluating the performance of a multimodal speaker tracking system at the edge-to-cloud continuum ”, in Device-Edge-Cloud Continuum , 2023.
Cite